Bellwork:

simplify:
$$(-2+5i)(-1+4i)$$
 $2 -8i -5i +20i$
 $3 -8i -5i -20$

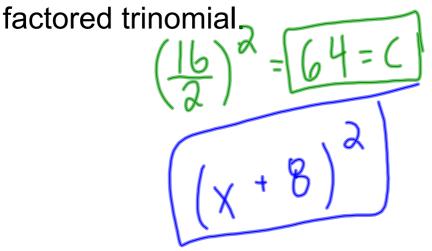
Chapter 4.7: Complete the Square

process of solving quadratics by a special form of factoring.

$$x^{2} + 6x + 9$$
 $(x + 3)(x + 3)$
 $(x + 3)^{2}$

ex. Solve:
$$x^2 - 8x + 16 = 25$$

$$(\frac{6}{2})^3 - \sqrt{(x - \frac{4}{4})^3} = \frac{1}{25}$$


$$x - 4 = \frac{1}{45}$$

$$x = 4 + 5$$

To complete the square.....

- get the x's on one side.
- add $\left(\frac{b}{2}\right)^2$ to both sides factor..... With $\frac{b}{a}$
- SOLVE.....

ex. find the value of c that makes $x^2 + 16x + c$ a perfect square trinomial. Then write as a

ex. Solve by completing the square:

Solve by competing the square:

$$2x^{2} + 8x + 14 = 0$$

$$x^{2} + 4x + 7 = 0$$

$$x^{2} + 4x + 4 = -7 + 4$$

$$x^{2} + 4x + 4 = -7 + 4$$

$$x^{2} + 4x + 4 = -7 + 4$$

$$x^{2} + 4x + 4 = -7 + 4$$

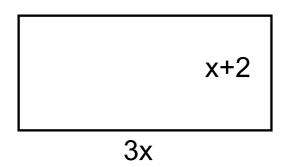
$$x^{2} + 4x + 4 = -7 + 4$$

$$x^{2} + 4x + 4 = -7 + 4$$

$$x^{2} + 4x + 4 = -7 + 4$$

$$x^{2} + 4x + 4 = -7 + 4$$

$$x^{2} + 4x + 4 = -7 + 4$$


$$x^{2} + 4x + 4 = -7 + 4$$

$$x^{2} + 4x + 4 = -7 + 4$$

$$x^{2} + 4x + 4 = -7 + 4$$

$$x^{2} + 4x + 4 = -7 + 4$$

the area of the rectangle is 72 square units. What is the value of x?

Write in vertex form. What is the vertex?

$$y = x^{2} - 10x + 22$$

$$y = (x^{2} - 10x + 25) + 22 - 25$$

$$y = (x - 5)^{2} - 3$$

$$(5 - 3)$$

The height of a baseball after it is hit is given by the function: $y = -16t^2 + 96t + 3$ find the max height of the ball.

Homework: Chapter 4.7 pg.288 #'s 3-8,16-18,22-27,36,46